Low-voltage ferroelectric–paraelectric superlattices as gate materials for field-effect transistors
نویسندگان
چکیده
The demand for new materials to be used in field-effect transistors and similar devices with low energy loss is more than ever before as integrated circuits have become a considerable source of energy consumption. One of the challenges in designing such energy efficient logic devices is finding suitable dielectric materials systems for the gate that controls the drain current in a p-type channel. A fundamental limit for energy efficiency exists in such devices imposed by the polarizability of conventional linear gate dielectrics. Generating on/off states in the channel that differ by at least a million times in the magnitude of the drain current near saturation requires several volts of gate bias for the case of a linear dielectric material in a submicron device. In this study, we demonstrate that ferroelectric–paraelectric superlattice heterostructures can generate the same effect in a p-type channel for bias voltages much lower than in a linear high dielectric constant gate. We consider a metal/superlattice/p-type semiconductor stack for this purpose. Using a thermodynamic model, we show that the multi-domain state of the ferroelectric layers can be tailored and distinct on/off states of the channel are possible for gate bias voltages below 1 V. The origins of such functionality of ferroelectric–paraelectric superlattices are discussed with respect to material characteristics such as the phase transition temperature of the ferroelectric, total polarization, and the dielectric response.
منابع مشابه
Multifunctional sensor based on organic field-effect transistor and ferroelectric poly(vinylidene fluoride trifluoroethylene)
A multifunctional sensor that responds to all – static/quasi-static or dynamic temperature or force – is reported. The sensor is based on a ferroelectric poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) capacitor connected to the gate of organic field-effect transistor (OFET). Both, the P(VDF-TrFE) capacitance and the output voltage of the P(VDF-TrFE)/OFET sensor exhibit a logarithmic ...
متن کاملFerroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors.
The dense surface charges expressed by a ferroelectric polymeric thin film induce ion displacement within a polyelectrolyte layer and vice versa. This is because the density of dipoles along the surface of the ferroelectric thin film and its polarization switching time matches that of the (Helmholtz) electric double layers formed at the ferroelectric/polyelectrolyte and polyelectrolyte/semicond...
متن کاملSustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors.
It has been shown that a ferroelectric material integrated into the gate stack of a transistor can create an effective negative capacitance (NC) that allows the device to overcome "Boltzmann tyranny". While this switching below the thermal limit has been observed with Si-based NC field-effect transistors (NC-FETs), the adaptation to 2D materials would enable a device that is scalable in operati...
متن کاملControlling the on/off current ratio of ferroelectric field-effect transistors
The on/off current ratio in organic ferroelectric field-effect transistors (FeFETs) is largely determined by the position of the threshold voltage, the value of which can show large device-to-device variations. Here we show that by employing a dual-gate layout for the FeFET, we can gain full control over the on/off ratio. In the resulting dual-gate FeFET the ferroelectric gate provides the memo...
متن کاملRecent Progress of Ferroelectric-Gate Field-Effect Transistors and Applications to Nonvolatile Logic and FeNAND Flash Memory
We have investigated ferroelectric-gate field-effect transistors (FeFETs) with Pt/SrBi₂Ta₂O₉/(HfO₂)x(Al₂O₃)1-x (Hf-Al-O) and Pt/SrBi₂Ta₂O₉/HfO₂ gate stacks. The fabricated FeFETs have excellent data retention characteristics: The drain current ratio between the on- and off-states of a FeFET was more than 2 × 10⁶ after 12 days, and the decreasing rate of this ratio was so small that the extrapol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015